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1. Introduction
1.1. Objective

The goal of this project is to design and build a robot arm with six degrees of freedom
(forward/back, up/down, left/right, yaw, pitch, roll) and program both approximate and
exact control algorithms for maneuverability. The end result is a proof of concept that the
same movement and control capabilities of an industrial robot arm, such as coordinate
positioning, path following and axis pivoting is possible with consumer electronics and
affordable materials.

1.2. Inspiration

I have had a great fascination with robots and robotic systems since I was very young. The
idea of automating such complex tasks to a degree of perfection comparable to human
capability has always intrigued me. Seeing how modern-day industrial robots perform has
always led me to wonder if I would be able to design and build a system that could even
come close to the capabilities of one of these machines using electronic components I
could get in hobby kits or online.

1.3. Project Overview

The next section provides a theoretical background on the selection of motors and microcontrollers.
Subsequently, the main methods for controlling the robot are discussed using both a geometric approach
and a matrix solution with inverse kinematics1.

The following two sections delve into the design and construction processes of the robot arm, both from
the point of view of the hardware and software used. In the software section, (missing). In the hardware
section, first the mechanical design of the prototype is explained, taking into account weight distribution
and torque limitations. Next, the process of building and assembling each of the joints of the robot arm is
detailed. At the end, a graphical design of the structure and a wiring diagram between the microcontroller
and the motors are shown.

The third chapter presents the software solutions for controlling the robot, using both inverse and forward
kinematic solutions in C++. The first method is a trigonometrical solution for solving positioning of the
robot end effector using three-degree of freedom movement. The mathematical equations and geometry
behind this solution are then explained. The reliability of the kinematic solutions is observed, letting the

1 https://www.mathworks.com/discovery/inverse-kinematics.html
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robot follow a predetermined path. A last algorithm for pivoting on a given axis is proposed and a solution
using derivatives is presented.

In the fourth chapter, various tests are performed to compare and evaluate the expected performance of the
robot arm with the actual behavior of the finished product. For example, it is verified that the robot arm
can perform a movement following a predetermined path. The robot´s precision while positioning and
orienting the end-effector, is also measured taking into consideration different operating speeds as well as
endurance tests. Finally, the maximum weight the robot arm can functionally handle without overloading
the motors is measured by pushing the robot arm to its mechanical limit.

The fifth and last chapter reflects on the project, the overall cost, compares the results with both industrial
and hobbyist robotic systems and details steps of the hardware and software development process where an
improvement could have been made, recounts the learning experience and final thoughts of the paper.

5
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2. Theoretical Basis
2.1. A brief introduction to robotics

The evolution of robotics has been driven by the pursuit of enhancing the efficiency,
precision, and versatility of various industries. The first industrial robots were introduced
in the 1960s as the need for automation of manpower-intensive tasks in manufacturing
increased. These early robots were often large, stationary machines, limited in their
capabilities and so were primarily designed for heavy lifting tasks (Moran, M.E., 2007).

Robotics as a field has since expanded beyond industrial applications, encompassing a
diverse range of domains, including healthcare, such as the daVinci Surgical System
(DiMaio et al., 2011), space exploration robots like the mars rovers (Maurette, M., 2003),
agriculture, household assistance and many others. The development of intelligent
systems, machine learning and advanced sensors have expanded the impact of robotics on
humanity as they have become more capable of making complex decisions, learning and
interacting with the environment.

2.2. Robot arms

The most common type of robot is the robotic arm, which functions as a mechanical
model arm. It is typically programmed to perform tasks and mimics the dexterity and
range of motion of a human arm. The links of the robot are connected by joints,
facilitating either rotational motion, as observed in an articulated robot (Fig. 1), or linear
displacement, such as a cartesian robot (Fig. 2) [1].

Figure 1. Figure 2.

An industrial arm, resembling a human arm with six joints equivalent to a shoulder, an
elbow, and a wrist, usually has a stationary shoulder mounted on a base structure. This
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type of robot has six degrees of freedom, enabling movement in six different ways. For
comparison, a human arm has seven degrees of freedom [2]. Just as a human arm's
purpose is to move the hand from one place to another, a robotic arm's function is to move
its end-effector to different locations.

Industrial robots are specifically engineered for repetitive tasks within controlled
environments, such as the automation of soldering the chassis of a car along an assembly
line like in Tesla factories. To instruct a robot in its designated task, the user guides the
robotic arm through precise motions using a handheld controller. The robot then stores the
exact sequence of movements in its memory, executing it each time a new unit arrives at
the assembly line (Casgains Academy, 2021). In this process, the actuators of the arm,
servo motors, play a pivotal role. These motors, equipped with sensors, enable the robot
to achieve precision and accuracy in its movements. For instance, when tightening bolts or
performing intricate tasks, the servo motors receive feedback from sensors, adjusting the
robot's actions to ensure consistency. These motors enhance the robot's efficiency by
maintaining consistent drilling locations and bolt-tightening forces, regardless of the
duration of operation. This precision is especially critical in the computer industry, where
the assembly of tiny microstrips relies on the accurate functioning of servo motors [4].

2.3. Servo motors

A servo motor is by definition a motor that uses feedback to operate. You can program a
servo motor to go to a certain position and it will keep sending power to the motor until it
reaches that position. A true servo motor has a constant feedback loop and makes
adjustments to the motor as it is in the process of rotating, instead of checking after the
rotation has ended and adjusting from there.

Figure 3.

A servo motor comprises a DC motor, gears, a feedback device, and a control circuit, as
illustrated in Figure 3. In its simplest form, the control circuit receives an input signal to
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activate the motor. The motor propels the gear train, connected to the output shaft and a
positioning sensor, typically a potentiometer, which is an electrical sensor that tracks
rotation in cheaper servos or an encoder in more advanced models.

The potentiometer transmits feedback error signals to the control circuit, instructing it to
adjust power to minimize the error and achieve the desired output angle of the motor shaft.
This feedback loop is depicted in Figure 4.

Figure 4.

The overall design involves the motor responding to input signals, adjusting its position
based on feedback, and continually refining until the target angle is reached.

Servo motors are the ideal solution with a dynamic payload that needs to start and stop
really fast. This occurs because their advanced control algorithms can measure the amount
of force being delivered and can check that to the acceleration of the load. This also helps
reduce noise. The reserve power they can deliver for a short burst of time makes them
good at accelerating loads. When handling fragile loads, servos are the best choice, since
they can give feedback on the amount of pressure they exert. The downsides to servos are
that they cost more, and that their more advanced operating system makes the setup
difficult.

The choice of servo motors for the robotic arm is crucial to achieve precise control and
movement. Factors such as torque, speed, and accuracy are considered when selecting
appropriate servo motors for each joint. With servo motors possessing reliable precision, a
low cost and high torque compared to their weight they are a perfect choice for this
project.
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2.3.1. Pulse width modulation (PWM)

The difference in internal design consequently results in a different way of controlling the
motor both, in hardware and software. Following is an explanation of how servos are
controlled. Most servos do not have the ability to turn continuously but are limited to
180°. This is due to the use of simple potentiometers as positional feedback devices. These
potentiometers are often not able to rotate continuously. Continuous rotational servo
motors are available and use a different positional feedback device. Professional servos
almost always use an encoder [] instead of a potentiometer even if continuous rotation is
not required.

Servos are not controlled by simply increasing the voltage of the power source which is
the case in regular DC motors. In the basic operation of a servo motor, this voltage is
regulated through a process known as pulse width modulation (PWM). In PWM, the
voltage is rapidly switched between on and off states, controlling the effective voltage
delivered to the motor []. The standard repetition rate of most servos is 20 milliseconds,
meaning that every 20ms the control circuit calculates if the motor needs more, less or
equal power to keep or move to the desired position (Fig. 5).

Figure 5.

The width of the pulse determines the desired motor position. Given the rotational
constraints of typically 180° maximum, the neutral position of the servo arm is at 90° and
the minimal position is 0° . In typical servos, the neutral position requires a pulse with
signal of around 1.5ms, the minimal position around 1ms and the maximum position a
pulse of around 2ms, seen in Fig. 6 below.
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These exact values can be different for different servo manufacturers and servo models of
the same manufacturer, but the general control idea stays the same.

Figure 6: Different control signals The accuracy of the standard potentiometer servos is
dependent on the accuracy of the sensor's feedback. When accuracy is an important aspect
in design a servo with a encoder as a feedback system should be used.

2.4. Microcontrollers

A microcontroller is a compact integrated circuit that contains a processor core, memory
core and IN/OUTPUT pins (Barret, S., & Pack, D., 2022; Keim, R, 2019). Microcontrollers are
designed for embedded systems and can execute user programmed instructions in order to
perform various tasks and functions. They are commonly used in electrical appliances,
automotive systems and open-source electronic prototyping platforms like Arduino boards
(Arduino, S. A., 2015).

2.4.1. Arduino
Arduino is an open source microcontroller which can be easily programmed, erased and
reprogrammed at any time. Introduced in 2005, the Arduino platform was designed to
provide an inexpensive and easy way for hobbyists, students and professionals to create
devices that interact with their environment using sensors and actuators. Based on simple
microcontroller boards, it is an open source computing platform that is used for
constructing and programming electronic devices. It is also capable of acting as a mini
computer just like other microcontrollers by taking inputs and controlling the outputs for a
variety of electronics devices. Arduino uses hardware known as the Arduino development
board and software for developing the code known as the Arduino IDE (Integrated
Development Environment). Built up with the 8-bit Atmel AVR microcontroller that are
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manufactured by Atmel or a 32-bit Atmel ARM, these microcontrollers can be
programmed easily using the C or C++ language in the Arduino IDE.

Figure 7.

2.5. Kinematics

Kinematics describes the rotational and translational motion of points, bodies (objects)
and systems of bodies (groups of objects) without consideration of what causes the motion
or any reference to mass, force or torque. Inverse kinematics (IK) was initiated in robotics
as the problem of moving a redundant kinematic arm with specific degrees of freedom
(DoFs) to a predefined target. Beyond its use in robotics, IK has found applications in
computer graphics, generating particular interest in the field of animating articulated
subjects. This survey focuses on IK applications in computer graphics, aiming to provide
insights about IK to young researchers by introducing the mathematical problem, and
surveying the most popular techniques that tackle the problem (Aristidou et al., 2017).

Positive kinematic analysis of the robotic arm refers to obtaining the position of the end of the robotic
arm relative to the reference coordinate system based on these angles and information about the
connecting rod, given that the rotation angles of the motor at each joint between the robotic arms are
known. The structure of the four-axis robotic arm in this paper is shown in Figure 5 where Joint0 is the
base coordinate system of the robotic arm, Joint1, Joint2, and Joint3 are all rotational joints, and Joint4 is
the wrist joint.[2]

2 Mahadevkar, S.V.; Khemani, B.; Patil, S.; Kotecha, K.; Vora, D.R.; Abraham, A.; Gabralla, L.A. A Review on Machine Learning Styles in Computer Vision—Techniques and
Future Directions. IEEE Access 2022, 10, 107293–107329. [Google Scholar] [CrossRef]
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In contrast to the positive kinematic analysis of the arm, the inverse kinematic analysis of the arm
uses calculations to solve for the angle of rotation at each joint when the relevant parameters of the
connecting rod and the position of the end of the arm concerning the reference coordinate system have
been obtained..[3]

Inverse Kinematics (IK) is a critical aspect of robotic arm control, involving the
determination of joint angles that result in a desired end-effector position and
orientation.[] Among the methods employed for solving inverse kinematics problems, the
trigonometrical solution stands out as a straightforward and accessible approach. This
method is particularly advantageous when dealing with robotic arms operating in a
two-dimensional vertical plane.

3. Hardware
3.1. Synopsis

The objective is to build a robot arm with six degrees of freedom with working
dimensions large enough to allow for grasping and manipulating a range of inanimate
objects within a defined workspace. The robot arm will have six rotational joints, enabling
it to have fluid movement along a three-dimensional space, having an end-effector at the
end for manipulation tasks.

3.2. Mechanical design

This chapter presents the design and initial implementation of the robotic arm prototype
that utilizes six servo motors to rotate all of its joints. The focus of this section is detailing
the mechanical design of the 4 main vertical joints, the base horizontal joint and the
rotational joint. The end effector design will be discussed in subsequent sections. The

3 Meribout, M.; Baobaid, A.; Khaoua, M.O.; Tiwari, V.K.; Pena, J.P. State of Art IoT and Edge Embedded Systems for Real-Time Machine Vision
Applications. IEEE Access 2022, 10, 58287–58301. [Google Scholar] [CrossRef]
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importance of a stable base to support the weight of the entire structure is emphasized in
this initial prototype.

Conventional 6DOF robotic arm joint distribution

Figure 8.

Base Joint; the base horizontal joint (Joint 1 from Fig.1) is responsible for providing a
stable foundation for the entire robotic arm. It is designed to rotate around a horizontal
axis, allowing the arm to pivot from side to side. The base joint is equipped with the
strongest servo motor, having 40 kg per cm of torque, since this joint supports the weight
of all other joints. Vertical joints; the three main vertical joints (Joint 2, 3, 5 from Fig. 1)
of the robotic arm are crucial for achieving a wide range of motion. These joints are
designed to rotate across the vertical axis, enabling the arm to move up and down. Each
vertical joint consists of a servo motor connected to a rigid linkage mechanism, allowing
precise control of angular displacement.

Rotational Joints; The further two axes, (J4 and J6 From Fig.1) , revolve and swivel the
forearm and wrist respectively, allowing it to move freely. Rather than the vertical and
horizontal joints, which move the robot to a specific position, the 6-axis arrangement
allows the end effector, the last point of the arm, to rotate to every angle just like a human
wrist can rotate the hand and allow your fingertips to reach any point in space with any
orientation.

13
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3.2.1. Design prototype

Ensuring the stability of the base is vital in the design of the robotic arm prototype. The
base must support the weight of the entire structure, maintaining balance and preventing
tip-over. To achieve this, the base should be flat and cover a large area, while being firmly
connected with the servo of the first joint. A wide base plate made of durable materials
will enhance the stability of the robot. For materials, 2 mm thick plywood sheets are used
for complex and intricate parts that need to be molded by hand whilst having durability.
The process for achieving hardness is by cutting the sheets to the desired size and gluing
them on top of eachother with a cyanoacrylate-based adhesive solution, this attaches the
sheets together and solidifies the wood altogether, as it solves itself inside through the
fibers of the wood sheet.

Figure 9. (own work)
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Figure 10. Base Plate upper view (own work) Figure 11. Base Plate side view with shoulder servo (own work)

The base plate consists of three solid parts; a flat slab that is attached with the base servo4

(fig. 1) and a housing structure that surrounds the servo and has a flat upper section
allowing the metallic servo output shaft to rotate along it minimizing vertical oscillation.

Figure 12. Shoulder servo front view (own work) Figure 13. Shoulder servo side view (own work)

On top of the flat upper section is the shoulder servo5, secured several layers of plywood
housing to prevent oscillation. The output shaft of the servo is made out of aluminum and
is attached to the metal shoulder (Fig.1, L_1), having a length of 18.7cm from the shoulder
to elbow servo joint.

5 WOAEIUOS 25KG RC Digital Servo

4 Qy3240mg High Speed Metal Gear 40kg
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This metal body is reinforced by several layers of cut plywood, having been molded to the
exact shape of the metallic skeleton to reduce weight. These layers are secured by bolts
and hexagonal nuts.

Figure 14. Metal body front view (own work) Figure 15. Metal body connected with elbow servo (own work)

Attached to the elbow servo (J3, Fig.1) there is a plastic extension structure that allows
another servo to be the second rotational joint (J4, Fig.1).

This servo will rotate the rest of the forearm and the last two joints, being powered by
Micro MG90D Servos (J5, J6, Fig.1). The end effector will be able to be attached and
removed at the end of the sixth joint according to the needed task.

Figure 16. Forearm structure (own work) Figure 17. Hand joint (own work)
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While assembling the final parts, every joint needs to be secured in with bolts, taking into
account that every servo motor is correctly aligned to the joint. Below is a true to scale
graphic with the nomenclature for the parts and joints.

Figure 18. Design of full robot arm structure with nomenclature (own work)

Table 1. with measurements and weight of the vertical joints and the base plates needed for torque calculation

Hand joint 16.403g 6cm

Forearm joint 31.707g 15cm

Elbow joint 65.393g 6.7cm

Shoulder joint 70.255g 18.7cm

Base plate 112.573g 3cm
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3.2.2. Vertical displacement at the second joint

A very important modification to the mechanical design that needs to be taken into
account in order to develop the software for movement and trajectory calculation is the
noticeable displacement at the second vertical joint, that elevates the third servo 6.7 cm
above of the second servo axis and rotates it by 90 degrees. This results in the relative
range of the shoulder joint going from 0-180 to 90-270. Regardless of the range staying
the same, because of the displacement, the elbow joint does not go into the shoulder joints
workspace, so it allows the robot to completely fold into itself and avoid colliding with its
own joints.

This is vital not to constrict the possible range of motion on the 2d planar space. The
maximum extended range is also made greater, as at its maximum stretch the robot has
around 6 cm more range.

Figure 19. work range when Theta2 < 180° Figure 20. ork range when Theta2 > 180°

3.2.3. Calculation of theoretical motor torque limitations

Using the information provided by the servo manufacturers about the torque capabilities
of the servo motors using ideal voltage, alongside measurements of length and weight of
the motors, joints and cables, we can use physical formulas in order to derivate how much
torque at the end effector is maximal possible, as well as how much torque each of the
servo motors are subjected to.

18
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3.2.4. Assembly and cable routing
Each of the servos has three cables, the first one (often yellow in color), is for the signal
input of the servo. The other two cables are for the power supply of the motor. One is for
the 5-volt (5 V) input, the other to ground the voltage (GND). They are routed into either
the Arduinos default 5 V power supply and ground, or an external power supply, for
example four AA batteries connected in series. They are colored red and black for 5 V and
GND respectively. The cables are to be rooted efficiently through the body of the robot
arm, as to not impede the range of motion. This is important to take into account and thus
requires the cables to be let with a certain slack between the joints to accomplish this.
After all cables are efficiently routed into the base using male/female jumper cables,
individual male/male jumper cables need to be connected to the “OUT” signal pins of the
arduino. According to the power requirements, and torque calculations of each servo
motor, an efficient way of connecting all electrical circuits is needed to provide each one
of them with sufficient voltage and to not overload the Arduino.

3.2.5. External power routing
The Servo motors for the base, first and second joint have much greater load on them, so
their power supply comes from an external source, and not the Arduino itself, to allow
them to exert maximal torque and also to not overload the Arduino. Four AA batteries are
connected along a serial circuit, to reach a voltage of 6 Volts. Another four AA batteries
are used and a parallel circuit is formed, having the same voltage of 6 Volts, but double the
Amps.

𝑊𝑎𝑡𝑡𝑠 =  𝐴𝑚𝑝𝑠 ×  𝑉𝑜𝑙𝑡𝑠

Amps multiplied by Volts equals Watts, which is the measurement used to determine the
amount of energy. The higher the wattage is, the more power and output from the
appliance []. The last three servo motors are supplied by the arduino with power, all three
connecting their 5 V and GND pins to the respective slots of the arduino.
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3.2.6. Final circuit board diagram
The circuitry on the robot looks like this, viewing it practically, with all the cables routed
into their correct power sources and analog pins.

Figure 21. Circuit designed with TinkerCad (own work)

Compared with the theoretical circuit board diagram, made using an open source software
called TinkerCad6 that shows the routing of each cable in a very compact form, allowing
for an easier overview of the whole circuit.

Individual motor range errors

3.2.7. Input device

6https://www.tinkercad.com/things/klqVVg9XwPh-shiny-gaaris/editel?returnTo=%2Fdashboard%3Ftype%3Dcircuits
%26collection%3Ddesigns
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4. Software
4.1. Synopsis

In this section, the main focus shifts towards the intelligent control and coordination of the
six degrees of freedom of the servo robot. This entails the development of inverse
kinematic algorithms that allow precise and efficient manipulation of the end effector
position and orientation. We will propose and implement two methods for such a control
and evaluate each of them in the results chapter on the following parameters: precision,
smoothness, flow of movement, repeatability and user interface usability.

4.2. Forward kinematic analysis

Forward Kinematics, as explained in chapter 2.5 refers to determining the positioning and
orientation of the end effector with the given values for the joint angles [7] We can derive

the two equations for the position of the end effector by using geometric definitions.

Figure 22. Vector graphic of the arm with joint angles (own work)

We can derive the two equations for the position of the end effector by using geometric
analysis. In particular, the position of all the effectors is determined by the angles andθ

1

we reach the coordinates of the end point P (x,y).θ
2

7 https://ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/multiscaleroboticlab-dam/documents/trm/2017/04_2017-10-23_ForwardKinematics.pdf
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We can trace a line parallel to the base which goes through . This allows to beθ
2 

θ
2 

defined in terms of , as they are alternate angles [8]. and a more useful angle . Weθ
1 

θ
2𝑣

express asθ
2 

θ
2 

= θ
2

+ 180° − θ
1 

Using this new angle along with the existing , we can now add up the horizontalθ
2

θ
1 

components using cosine, and the vertical components of the joint vectors A, B, C, D using
sine functions in order to write equations for the endpoints x and y. The vector for the hand
joint D is assumed to be.

- )𝑥 = 𝐴 · 𝑐𝑜𝑠θ
1 

+ 𝐵 · 𝑐𝑜𝑠θ
2

+ 𝐶 · 𝑐𝑜𝑠(90° θ
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- )𝑦 = 𝐴 · 𝑠𝑖𝑛θ
1 

+ 𝐵 · 𝑠𝑖𝑛θ
2

− 𝐶 · 𝑠𝑖𝑛(90° θ
2

In angles (90° - θ) there is a relation between all trigonometric ratios. It is by definition,
that cos (90° - θ) = sin θ and sin (90° - θ) = cos θ. [9] We can rewrite our equations as:

𝑥 = 𝐴 · 𝑐𝑜𝑠θ
1 

+ 𝐵 · 𝑐𝑜𝑠θ
2

+ 𝐶 · 𝑠𝑖𝑛θ
2
 + 𝐷
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1 

+ 𝐵 · 𝑠𝑖𝑛θ
2

− 𝐶 · 𝑐𝑜𝑠θ
2

Furthermore, our definition of from above, can be transformedθ
2 

+ θ
2

+ 180° − θ
1 

into + and inserted. We now have our final equations:θ
2

= θ
1 

θ
2 

− 180°

𝑥 = 𝐴 · 𝑐𝑜𝑠(θ
1 

) − 𝐵 · 𝑐𝑜𝑠(θ
1 

+ θ
2 

) − 𝐶 · 𝑠𝑖𝑛(θ
1

+ θ
2
) +  𝐷

𝑦 = 𝐴 · 𝑠𝑖𝑛(θ
1 

) − 𝐵 · 𝑠𝑖𝑛(θ
1 

+ θ
2 

) + 𝐶 · 𝑐𝑜𝑠(θ
1 

+ θ
2 

)

Eq. 4.2.1 Forward kinematic equations for the position of the end effector

9 https://www.math-only-math.com/trigonometrical-ratios-of-90-degree-minus-theta.html
8 https://thirdspacelearning.com/gcse-maths/geometry-and-measure/angles-in-parallel-lines/
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Now that we have planted our forward kinematic equations, we use them in our derivative
approach in the coming chapter 3.3, however it is essential to also put forward the inverse
kinematic equations, such as to make a comparison between the two approaches possible.
In the next subchapter, a trigonometric solution to derive our inverse kinematic equations
is explained.

4.3. Trigonometrical approach

In the context of the trigonometrical solution, the primary objective is to calculate the
angles of the three vertical joints necessary to reach a given point P(x, y) on the vertical
plane. This method relies on fundamental trigonometric principles, allowing for an
intuitive visualization of the arm's possible configurations.[]

To visualize, consider a scenario where a robotic arm is tasked with reaching a point
P(x, y) in the vertical plane (Figure 23, left).

Figure 23. Figure 24.

We can then define angles , and as the desired angles for the vertical joints (Figureθ
1

θ
2

θ
3

24, right). These joints will also be renamed as A, B, C and D for the simplicity of the
equations, we already know their exact lengths.

There are, however, infinite solutions for 3-jointed systems [], so we have to set the
orientation of the end effector to a fixed angle. Let's take the case, where the end effector
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is always oriented parallel to the ground, such as is in the diagram above. This means that
the hand joint has an orientation of 0° relative to the horizontal axis.

We next draw a vertical line across point P and the x-axis, in order to form a polygon and
derive a geometrical definition for .θ

3

Figure 25.

We can see that this polygon can be divided into four triangles, all of which must fulfill
the basic property that their internal angles add up to 180°.

Figure 26.

We can define the sum of all internal angles of the polygon, then solve for theta3.

3 (180°) = 3 (90°) + + + (360° - )· · θ
1

θ
2

θ
3

= + - 90°θ
3

θ
1

θ
2
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This relation leaves in terms of and , leaving us with only two unknown angles andθ
3

θ
1

θ
2

thus reduces the method to a two-joint kinematic problem.

Solving for these last two angles is possible using further definitions of trigonometry. Let's
revisit our graph from before.

Figure 27.

Tracing two lines, S and R, we bisect both and into , and ,θ
1

θ
2

θ
1𝐴

θ
1𝐵

θ
2𝐴

θ
2𝐵

respectively. We start by defining the segment S. Using the pythagorean theorem [] we can

say, = .𝑆 𝐵2 + 𝐶2

Now we can use the law of cosines [], and define = , and𝑆2 𝐴2 + 𝑅2 − 2𝐴𝑅 · 𝑐𝑜𝑠(θ
1𝐴

) 

solve for = .θ
1𝐴

𝑎𝑟𝑐𝑐𝑜𝑠( 𝐴2+𝑅2−𝑆2

2𝐴𝑅 )

can be expressed as = ), as the adjacent cathetus to this angle has aθ
1𝐵

θ
1𝐵

 𝑎𝑟𝑐𝑐𝑜𝑠( 𝑥−𝐷
𝑅

length of , given that the vertex of is positioned at the point (x-D / y). It is𝑥 − 𝐷 θ
3

important to note, this value is only true for the case where the end effector is parallel to
the ground such as was our forward kinematic example in chapter 3.2. In a further chapter
a small adjustment to the equation for all orientations of the end effector is discussed.

R can be thus be written as . is solved using the law of cosines,𝑅 = (𝑥 − 𝐷)2 + 𝑦2 θ
2𝐵

= , and the last expression for would be = ).θ
2𝐵

𝑎𝑟𝑐𝑐𝑜𝑠( 𝑆2+𝐴2−𝑅2

2𝐴𝑆 ) θ
2𝐴

θ
2𝐴

 𝑎𝑟𝑐𝑐𝑜𝑠( 𝐵
𝐶
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As defined, = + and = + , and we can derive equations for each angleθ
1

θ
1𝐴

θ
1𝐵

θ
2

θ
2𝐴

θ
2𝐵

, and .θ
1

θ
2

θ
3

θ
1

=  𝑎𝑟𝑐𝑐𝑜𝑠( 𝐵
𝐶 ) + 𝑎𝑟𝑐𝑐𝑜𝑠( 𝑆2+𝐴2−𝑅2

2𝐴𝑆 ) 

θ
2
 =  𝑎𝑟𝑐𝑐𝑜𝑠( 𝑥−𝐷

𝑅 ) +  𝑎𝑟𝑐𝑐𝑜𝑠( 𝐴2+𝑅2−𝑆2

2𝐴𝑅 )

= + - 90°θ
3

θ
1

θ
2

These three equations are our inverse kinematic equations, as already mentioned, they take
the value of the desired coordinate, and return the orientation of the vertical joints in
degrees which is then transmitted to the servos to move the robot to the point P(x, y).

4.4. Derivative Approach

The derivative approach differentiates itself from the trigonometrical method, as it does
not calculate the angles , , given an absolute coordinate P(x,y) on the verticalθ

1
θ

2
θ

3

plane, but rather given a “small” change in position , it determines the(∆𝑥,  ∆𝑦)
approximates values for the change in arm rotation that would attain such(∆θ

1
, ∆θ

2
,  ∆θ

3
)

a change in position.

The forward kinematic functions f for x and g for are dependant on the values , and𝑦 θ
1

θ
2

are expressed as:

, )𝑓( θ
1
 θ

2
= 𝑥

, )𝑔( θ
1
 θ

2
= 𝑦

The functions for a change in position by the factor and would be dependant on∆𝑥 ∆𝑦
, and their corresponding changes in rotation and :θ

1
θ

2
∆θ

1
∆θ

2

, )𝑓( θ
1

+ ∆θ
1
 θ

2
+ ∆θ

2
= 𝑥 +  ∆𝑥
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, )𝑔( θ
1

+ ∆θ
1

θ
2

+ ∆θ
2

= 𝑦 + ∆𝑦

Having planted these equations, as and are differentiable in every point of the domain𝑓 𝑔
of , as defined by derivative identity (see Stewart, J. (2001)), the following identityθ

1
, θ

2

is true:

Moreover, since and are continuously differentiable in every point of the domain of𝑓 𝑔
, it is the case that so long as the matrix above (the "Jacobian" ) is notθ

1
, θ

2
𝐽(θ

1
, θ

2
)

singular in , the following holds due to the inverse function theorem (see Stewart, J.θ
1
,  θ

2
 

(2001)): .

The terms of the Jacobian can be easily calculated, because we already have the forward
kinematic functions and :𝑓 𝑔
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In order to determine the singularity of the Jacobian, the easiest computational method
(for dimension 2) is via the determinant. In particular, we have that:

Finally, we define the approximate angle movements as

From which, using Cramer's rule, we have that

... [complete]

4.5. Software implementation

Having presented both the inverse kinematic and derivative solutions for the angles ,θ
1

θ
2

and , we can code these same mathematical equations into the C++ Arduino interface.θ
3

The implementation aims to create an accessible and interactive robotic system capable of
responding to user input for movement control. To enhance the efficiency and guarantee
the correctness and extensibility of the implementation, it is essential to consider
optimization techniques and code structuring. This not only facilitates faster computation
but also ensures the smooth execution of the control algorithm within the limited resources
of the Arduino microcontroller.

4.5.1. Software Architecture
The software architecture is designed with modularity in mind, promoting code
organization and readability. Essential libraries for servo motor control are included
(#include <Servo.h>) and utility functions for logging and enumerations for logging
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levels are defined. The use of function pointers for logging callbacks allows monitoring
the system's behavior in real-time, and is crucial in the debugging process.

enum class LoggingEnum {FATAL, ERROR, WARN, INFO, DEBUG};

typedef void (*LoggingCallback)(LoggingEnum, String);

String LoggingEnumToString(LoggingEnum level) {

switch (level) {

case LoggingEnum::DEBUG: return "DEBUG";

case LoggingEnum::INFO: return "INFO";

case LoggingEnum::WARN: return "WARN";

case LoggingEnum::ERROR: return "ERROR";

case LoggingEnum::FATAL: return "FATAL";

default: return "UNKNOWN";

}

}

The logging system is designed to categorize log messages into different levels of severity
(Fig.#). This is achieved with an enumeration called LoggingEnum. It enumerates various
log levels, namely Fatal, Error, Warn (warning), Info (informational), and Debug.

4.5.2. ServoArm Class
A class structure ServoArm is defined, with the purpose of encompassing all of the logic
of controlling an “arm” via a servo motor. Particularly ServoArm abstracts the behavior of
an arm being rotated against a reference halfline.

(Figure 28.) Figure 4.5.2. ServoArm abstracts the behavior of an arm being rotated against a reference halfline.
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Key functionalities of the class include methods for moving the arm to a specified angle
(moveTo), moving the arm by a delta angle (moveBy), and retrieving the current angle
(currentAngle).

class ServoArm {

public:

ServoArm(String name, double length, int pin, MapRange map_range,

LoggingCallback logging_callback);

void moveTo(double angle);

void moveBy(double delta);

double currentAngle();

double length();

};

Additionally, the class incorporates mapping functions to ensure that the desired arm
angles are translated into corresponding servo angles within defined lower and upper
bounds for the arm movement. Such a mapping is specified via the struct MapRange.

struct MapRange {

double lower_bound;

double upper_bound;

double servo_to_lower_bound;

double servo_to_upper_bound;

};

Finally, error handling is implemented to check if the specified angle is within the allowed
range, and warning messages are logged in case of out-of-range movements.

4.5.3. Robot Class

The Robot class is designed to organize the movement of the entire robotic system. It
provides a comprehensive set of methods that facilitate precise control and monitoring of
the system's position and orientation. This class defines key functionalities, such as

30



Designing a Microcontroller-Driven Robotic Arm with Software Integration Alejo Restrepo

moving to specific Cartesian coordinates, moving by incremental coordinates, and
selecting between exact and derivative-based movement methods.

To ensure the accuracy of the robotic system's movements, we first implement various
mathematical utilities. We started by defining trigonometric identities needed for the
calculations in our kinematic algorithms, as these by default are given by the built in
functions Sin() and Cos() in radians. Thus a transformation into degrees is needed. The
constant Pi is also defined.

constexpr double pi = 3.1415926535897932384626433;

double cosDegrees(double x){

return cos(x * pi / 180);

}

double cosDegreesDerivative(double x){

return - (pi / 180) * sin(x * pi / 180);

}

double sinDegrees(double x){

return sin(x * pi / 180);

}

double sinDegreesDerivative(double x){

return (pi / 180) * cos(x * pi / 180);

}

double acosDegrees(double x){

return acos(x) * 180 / pi;

}

Inside the class lie the two main methods for controlling the robot arm, the exact
trigonometric method, and the approximate derivative method. The implementations for
the exact method takes the cartesian coordinates as an input value and runs them through a
function _calculateAngularCoordinates a function based entirely on the trigonomic
equations presented in chapter 3.3 which returns the angles and (where isθ

1
θ

2
θ

3

determined due to the condition of horizontality of the hand effector).

AngularCoordinates _calculateAngularCoordinates(

CartesianCoordinates cartesian_coordinates) {

double x = cartesian_coordinates.x;

31



Designing a Microcontroller-Driven Robotic Arm with Software Integration Alejo Restrepo

double y = cartesian_coordinates.y;

double A = _shoulder->length();

double B = _elbow->length();

double C = _forearm_length;

double D = _hand->length();

double R = sqrt(pow((x - D), 2) + pow(y, 2));

double S = sqrt(pow(B, 2) + pow(C, 2));

double shoulder_angle = acosDegrees((x - D)/R)

+ acosDegrees((pow(A, 2) + pow(R, 2) - pow(S, 2)) / (2 * A *R));

double elbow_angle = acosDegrees(B/S)

+ acosDegrees((pow(S, 2) + pow(A, 2) - pow(R, 2)) / (2 * A * S));

return {shoulder_angle: shoulder_angle, elbow_angle: elbow_angle};

}

double _calculateHandAngle(AngularCoordinates angular_coordinates) {

return angular_coordinates.shoulder_angle +

angular_coordinates.elbow_angle - 90;

}

If the projected angular coordinates the robot would have in the next step do not exceed
the mechanical limitations of the servo motors or the working range of the robot itself, no
logging error message is printed and the servo moveTo method in the ServoArm class is
executed with the new angular coordinates.

void _moveByWithExactMethod(double delta_x, double delta_y) {

CartesianCoordinates current_cartesian_coordinates =

currentCartesianCoordinates();

CartesianCoordinates projected_cartesian_coordinates = {

x: current_cartesian_coordinates.x + delta_x,

y: current_cartesian_coordinates.y + delta_y};

AngularCoordinates projected_angular_coordinates =

_calculateAngularCoordinates(projected_cartesian_coordinates);

if (isnan(projected_angular_coordinates.shoulder_angle)

|| isnan(projected_angular_coordinates.elbow_angle)) {

_logging(

LoggingEnum::WARN,

"Moving the robot to the impossible position "

+ projected_cartesian_coordinates.toString());

return;

}

_shoulder->moveTo(projected_angular_coordinates.shoulder_angle);

_elbow->moveTo(projected_angular_coordinates.elbow_angle);
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_hand->moveTo(_calculateHandAngle(projected_angular_coordinates));

}

The derivative method has a more extensive implementation, but it is similar to the exact
method. First we define the cartesian coordinates where the robot is currently at, and the
ones the robot will be after a movement by the increment . The derivative matrix(∆𝑥, ∆𝑦)
is then calculated, checking also if the current point is unstable or not. The criteria
employed for stability is the derivative to be greater than the threshold value 0.001.
However, stability is ensured in the algorithm itself as we will see in the next paragraph
and such a check is purely for running time safety.

void _moveByWithDerivativeMethod(double delta_x, double delta_y) {

CartesianCoordinates current_cartesian_coordinates =

currentCartesianCoordinates();

CartesianCoordinates expected_cartesian_coordinates = {

x: current_cartesian_coordinates.x + delta_x,

y: current_cartesian_coordinates.y + delta_y};

AngularDerivatives angular_derivatives = _calculateAngularDerivatives({

shoulder_angle: _shoulder->currentAngle(),

elbow_angle: _elbow->currentAngle()});

double determinant = _calculateDeterminant(angular_derivatives);

if (abs(determinant) < _differential_stability_threshold) {

_logging(

LoggingEnum::FATAL,

"Currently we are in an unstable position " +

current_cartesian_coordinates.toString());

return;

}

// …

The delta angles are calculated and a comparison is made between the point where the
robot was expected to go and the real point reached with the derivative method. A further
check is made if the point the robot is moving to is unstable, finally the moveBy method is
called to perform the rotation of the servos.

// ...

double delta_shoulder_angle = (

delta_x * angular_derivatives.y_by_elbow_angle

- delta_y * angular_derivatives.x_by_elbow_angle) / determinant;

double delta_elbow_angle = (

delta_y * angular_derivatives.x_by_shoulder_angle
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- delta_x * angular_derivatives.y_by_shoulder_angle) / determinant;

AngularCoordinates projected_angular_coordinates = {

shoulder_angle: _shoulder->currentAngle() + delta_shoulder_angle,

elbow_angle: _elbow->currentAngle() + delta_elbow_angle};

CartesianCoordinates projected_cartesian_coordinates =

_calculateCartesianCoordinates(projected_angular_coordinates);

_logging(

LoggingEnum::INFO,

"Target: " + expected_cartesian_coordinates.toString()

+ ". Actual: " + projected_cartesian_coordinates.toString());

AngularDerivatives projected_angular_derivatives =

_calculateAngularDerivatives(projected_angular_coordinates);

double projected_determinant =

_calculateDeterminant(projected_angular_derivatives);

if (abs(projected_determinant) < _differential_stability_threshold) {

_logging(

LoggingEnum::WARN,

"Trying to move to an unstable position "

+ projected_cartesian_coordinates.toString());

return;

}

_shoulder->moveBy(delta_shoulder_angle);

_elbow->moveBy(delta_elbow_angle);

_hand->moveBy(delta_shoulder_angle + delta_elbow_angle);

return;

}

4.5.4. Input method
The input method, a 2 axis joystick is used to provide an interface between the user and
the robot. The mechanical movement of the joystick is converted into electrical signals to
the arduino, to provide a numerical value of a cartesian coordinate as explained in chapter
2.*. The values of the joystick, which range from 0 to 1023, are mapped onto a variable
delta_x and delta_y. The velocity of the robot's movement depends on the scale of these
variables.
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4.5.5. Control Loop
The final part of the software implementation is the control loop, which defines the analog
pins that the joystick is connected to and prints the logging messages through the serial
monitor of the Arduino.

We can manually change the method used for trajectory by either calling
robot.setMethodtoDerivative(); or robot.setMethodtoExact();

The software implementation detailed in this section establishes a robust foundation for
the development of an accessible and interactive robotic system. The modular software
architecture promotes ease of maintenance and future expansion. The ServoArm and
RobotWithHorizontalHand classes encapsulate necessary functionalities, such as servo
motor control and precise system movement and orientation.
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5. Results
5.1. Synopsis

To interpret the robot arm's movement capabilities with concrete criteria, a series of
experiments were conducted using test persons. A group of 5 individuals was asked to
pilot the robot arm to follow a predetermined path, simulating a task requiring precise
movement. In the second experiment they were asked to go to a certain object on the table
and tip it over with the end effector. They were then asked several binary questions
relating to the maneuverability and accuracy of the robot while performing both tests.

5.2. Protocol one: Following predetermined path

The test individuals are instructed to pilot the robot using the joystick in three different
ways: Horizontal movement, vertical movement and diagonal movement. They had to
answer the following questions with a yes or no answer:

● Question #1.1: Did the robot follow a straight path in the commanded direction ? -
(testing correctness)

● Question #1.2: Did the robot follow a straight path without oscillations ? - (to test
for smoothness)

● Question #1.3: Does the robot react immediately to the joystick command ? - (this
shows if there is a perceivable delay in the input)

5.2.1. Horizontal Movement (Left Right / Right Left)⇒ ⇒

The test individuals were instructed to pilot the robot using the joystick following a
straight horizontal line, both from left to right and right to left each only one attempt. They
were next asked the questions from above, below is a table with their answers.
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Person 1 Person 2 Person 3 Person 4 Person 5

Q1.1 Yes Yes Yes Yes Yes

Q1.2 Yes Yes Yes Yes Yes

Q1.3 Yes Yes Yes Yes Yes

5.2.2. Vertical Movement (Up Down / Down Up) ⇒ ⇒

The individuals were told to pilot the robot using the joystick in a straight vertical line,
first starting from above going down, then from below going up, each only one attempt.
They were then asked the same questions.

Person 1 Person 2 Person 3 Person 4 Person 5

Q1.1 Yes Yes Yes Yes Yes

Q1.2 No Yes Yes No Yes

Q1.3 Yes Yes Yes Yes Yes
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5.2.3. Diagonal Movement (45° , 135° )⇕ ⇕

Diagonal Movement 45° Diagonal Movement 135°

The test individuals were instructed to pilot the robot using the joystick in order to follow
a diagonal line as closely as possible. The subjects would follow the two possible diagonal
trajectories; Bottom left to top right or top left to bottom right, in both directions.

Diagonal Movement 45°

Person 1 Person 2 Person 3 Person 4 Person 5

Q1.1 Yes No No Yes Yes

Q2 No Yes Yes Yes Yes

Q3 Yes Yes Yes Yes Yes

Diagonal Movement 135°

Person 1 Person 2 Person 3 Person 4 Person 5

Q1.1 No Yes Yes Yes No

Q1.2 No No Yes No Yes

Q1.3 Yes Yes Yes Yes Yes
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5.3. Protocol two: Trajectory towards given point

The robot is to start at a canonical predetermined position, the test individuals are then
instructed to pilot the robot with the joystick towards a fixed point on the table, simulating
a common pick and place scenario, and touch a marker, causing it to fall over. Each person
is free to guide the end effector using any path they wish, but has three attempts to do so
within 10 seconds. They are then asked the following questions:

● Question #2.1: Could you command the robot to the target object and tip it over ? -
(testing correctness)

● Question #2.2: Did you have to do readjustments to reach the target object? - (to
test for smoothness)

● Question #2.3: Could the robot achieve the target object in a repeatable way ? -
(repeatability)

Experiment environment side view

Person 1 Person 2 Person 3 Person 4 Person 5

Q2.1 Yes Yes Yes Yes Yes

Q2.2 Yes No No Yes No

Q2.3 Yes Yes Yes Yes Yes
For Question #2: Did you have to do readjustments to reach the target object? an answer

with “No” is preferred, and a “Yes” is not. Thus the different coloring scheme.
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Each person conducted the experiment 3 times, resulting in a total of 15 runs. The real
time coordinates of the robot were printed out to the serial monitor of the Arduino every
100ms, so it was possible to plot every run using GeoGebra by saving the output
coordinates in a text file and inputting them on the graph. Of the total 15 runs, 13 were
successful in tipping over the object. The two unsuccessful runs were both from test
person 4, taking 13.4 and 11.9 seconds.

The time it took the test person from the first input of the joystick to the successful
displacement of the target object was measured in seconds for each of the three attempts
and plotted in a graph.
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Quality assurance in order to see what are the weak points (drawbacks) for every method.

Corrections should be done from a user point of view

6. Discussion

6.1 Results

4.1.1 Interpretation
The findings of this study entail a comprehensive and objective evaluation, undertaking a
comparative analysis of various factors and performance metrics through multiple test
iterations. We specifically compared two main ways of controlling the robot, as explained
in the software chapter. One method relies on exact calculations using trigonometry, while
the other uses a solution based on derivatives, looking at relative changes in values. The
results from lots of tests point out the subtle differences in how well these two control
methods work. Subjective evaluations were also conducted using test persons controlling
the arm with an input device mentioned in chapter 2.3.2, asking the test persons to rate the
maneuverability and comprehension of the controls.

This analysis helps us better grasp the pros and cons of using precise trigonometry-based
control versus the relative control based on derivatives in the software we've presented.

Repeatability - is how well the robot will return to a programmed position. This is not the
same as accuracy. It may be that when told to go to a certain X-Y-Z position that it gets
only to within 1 mm of that position. This would be its accuracy which may be improved
by calibration. But if that position is taught into controller memory and each time it is sent
there it returns to within 0.1mm of the taught position then the repeatability will be within
0.1mm.
Accuracy and repeatability are different measures. Repeatability is usually the most
important criterion for a robot. ISO 9283 sets out a method whereby both accuracy and
repeatability can be measured. Typically a robot is sent to a taught position a number of
times and the error is measured at each return to the position after visiting 4 other
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positions. Repeatability is then quantified using the standard deviation of those samples in
all three dimensions.

6.1. Cost Effectiveness

6.2. Improvements

6.3. Learning Bits
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